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 Motion structures 
extend their reach

A structure is an assembly of resistant bodies capable of bearing 

loads. In general, it must be rigid and no internal mobility or 

relative motions among its members are allowed. However, 

a family of unconventional structures exists, from common 

household items such as umbrellas and foldable chairs to solar 

panels of spacecraft and leaves of hornbeam trees, that is capable 

of large geometrical transformation. These systems are commonly 

known as deployable structures and fall into two categories. The 

first category is the deformable structure. It is characterized by 

the fact that the overall strain energy of the structure varies 

during expansion or folding. Typical engineering examples include 

the storable tubular expandable member (STEM), an aerial for 

spacecraft similar to a carpenter’s tape, and cardiovascular stents, 

a type of medical device for treatment of blocked or constricted 

blood vessels. The second category is essentially mechanism. 

Deployment is executed by activation of an internal mechanism 

carefully designed either artificially or by nature. Retractable roofs 

for sports facilities, the wings of beetles, and a toy called the 

Hoberman sphere belong to this second category. 

This review focuses on the second category. Because of their 

internal mobilities, the term ‘motion structures’ is used to describe this 

branch of the deployable structure family. To understand the behavior 

of motion structures, it is necessary to review the basic building block 

of such assemblies: mechanisms. 

A mechanism is a combination of a small number of rigid bodies (a 

kinematic chain) connected by movable joints (kinematic pairs) for the 

purpose of transmitting motion1. The mobility of a mechanism is the 

number of independent parameters that must be used to bring it into a 

particular position. It is generally determined by the Kutzbach criterion 

that has the following form for three-dimensional mechanisms:

m = 6(n – 1) – 5j1 – 4j2 – 3j3 – 2j4 – j5 (1)

where m is the mobility of the mechanism, n is the number of links, 

and ji is the number of joints having i degrees of freedom. In two 

dimensions, it becomes:

m = 3(n – 1) – 2j1 – j2 (2)

In some cases, m can become zero or less. This generally indicates 

that the motion is impossible and the mechanism is in fact a 

structure (statically determinate or indeterminate). However, there 
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are exceptions because the Kutzbach criterion only considers the 

topological features of an assembly. Certain geometrical conditions of 

an assembly could lead to mobility even when m is zero or negative. 

This type of mechanism is called an ‘overconstrained mechanism’. 

Most commonly used joints are called lower pairs, i.e. joints with 

surface contact such as a hinge (turning pair, revolute joint, or simply 

revolute, denoted by R), slider (a prismatic pair, denoted by P), or ball 

joint (denoted by S). A mechanism with only lower pairs is called a 

‘linkage’†. When a number of basic linkages are assembled together in 

such a way that the mobilities of each linkage are retained, a motion 

structure is born. For example, an umbrella is a combination of a 

number of linkages, each of which has three revolutes and one slider. 

The slider is the controlling parameter of its motion and it is therefore 

a motion structure with m = 1.

Among the many types of joints, revolutes are regarded as simple 

to make, easy to maintain, and having robust performance. They are 

therefore the most widely used in motion structures.

Planar motion structures with revolute joints
The basic linkage for construction of planar motion structures with 

revolutes (hinges) is the planar 4R linkage. Connecting the linkages 

side by side creates a motion structure as shown in Fig. 1 . It is much 

more demanding to make a motion structure from a closed loop of 

4R linkages. The first recorded attempt goes back to Kempe2. In 1878, 

he connected two 4R linkages to form a mobile assembly. In total, 

he reported six such cases. Fig. 2  shows an example of case 5 of the 

Kempe linkage. Note that for the Kempe linkage, m = –3 according to 

the Kutzbach criterion. But Kempe proved that his linkage has mobility 

arising from its particular geometry. The Kempe linkage can be also 

regarded as a closed chain of four scissor pairs. This naturally leads to 

the question of whether other mobile arrangements exist. 

In 1990, Hoberman3 discovered that if three joint locations of two 

plates in a scissor pair are identical, the central angle, α, sustained by 

the lines linking two respective end joints, remains the same when the 

scissor pair opens and closes (Fig. 3) . He therefore declared that it was 

possible to build mobile closed chains of many pairs as long as the sum 

of the central angles is 2π, though strictly speaking, symmetry must 

exist in the arrangement to avoid mismatch when the first pair meets 

the last and forms a closed loop. This concept is the base of a well-

known toy: the Hoberman flight ring (Fig. 4) , which can be acquired 

from any good toy shop.

A more general solution has been obtained by You and 

Pellegrino4, leading to the formation of a family of large foldable bar 

Fig. 1 A planar mobile motion structure made from two 4R linkages ABDC and 

DEGF. It is also called an assembly of scissor pairs because of the scissor-like 

beams used.

Fig. 2 Case 5 of the Kempe linkage.

 †This definition follows that found in reference1. However, it is not exact and 

other definitions exist. 

Fig. 3 A pair of identical beams forming a scissor pair. The central angle, α, is 

constant.

Retractable roofs for sports 
facilities, the wings of beetles, and a 
toy called the Hoberman sphere are 
all motion structures
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structures in which many planar parallelogram 4R linkages can be 

tessellated (Fig. 5) . The structure was intended to be a supporting 

frame for expandable roof covers. Jensen and Pellegrino5, and 

then Luo et al.6, later demonstrated that a complete cover can be 

formed by carefully selecting the shape of the rigid plates (Fig. 6) . 

Although the motion pattern is similar to that of an iris camera 

shutter, there is no sliding involved. The plates rotate about each 

other via the revolutes. 

Spatial motion structures with revolute 
joints
A large number of spatial motion structures can be constructed using 

scissor pairs. The earliest was probably a model of a travelling theatre 

by Pinero7. More recent examples can be found in structures by Escrig8, 

Gantes9, Sanchez-Cuenca10, and Pellegrino and You11 for applications 

including swimming pool covers, exhibition stands, and frames that 

support aerospace antenna reflectors. However, some of the motion 

structures mentioned here are not real mechanisms. Only in the fully 

folded and expanded configurations do the structural components fit 

together without strain. The expansion causes a small snap-through of 

certain members, which may sometimes be advantageous because the 

structures then self-lock without additional latches. On the other hand, 

the selection of material becomes crucial to avoid excessive strain. 

In kinematically mobile designs, the scissor pairs are placed so that 

they remain planar during deployment, i.e. four end revolutes and the 

mid revolute of a scissor pair remain parallel throughout deployment. 

Thus, they are akin to planar motion structures. One example is the 

Hoberman expandable sphere in which all the scissor pairs are arranged 

on great circles of a sphere and they remain so during expansion3.

Although no direct reference to true three-dimensional linkages are 

made in publications concerning spatial structures made from scissor 

pairs, a close examination reveals that three-dimensional linkages do 

indeed appear in these assemblies. For example, the ring structure 

shown in Fig. 7 , which can fold up radially into a compact bundle, 

contains a number of closed-chain 6R Sarrus linkages. One of them 

consists of links (a) to (f). Thus a more appropriate approach is to use 

existing three-dimensional linkages as building blocks for construction 

of motion structures.

For a closed-chain three-dimensional linkage with only revolute 

joints, when m = 1, n and j1 (which must be the same) are 7, 

according to the Kutzbach criterion. It has proven immensely difficult 

geometrically to construct practical spatial motion structures with 

one internal mobility unless n and j1 are even and less than 7, i.e. the 

linkages need to be exceptions to the Kutzbach criterion. As Hunt has 

observed12, the most common and most useful three-dimensional 

mechanisms to be discovered date back many years and are 

overconstrained linkages.

Fig. 4 Expansion of a Hoberman flight ring.

Fig. 5 Expanded and folded configurations of a mobile foldable bar structure in 

which the rigid plates of earlier diagrams are replaced by rigid bars.
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The smallest number of links required to form a meaningful three-

dimensional closed-chain linkage with revolutes is four. There are two 

types of three-dimensional 4R linkages. The first, shown in Fig. 8 , is 

the spherical 4R linkage in which the axes of the revolutes meet at 

one point. Kovács et al.13 constructed a class of expandable polyhedral 

structures based on the linkage, which simulate the swelling motion of 

the cowpea chlorotic mottle virus. The other 4R linkage is the Bennett 

linkage14 (Fig. 9) , in which the axes of the revolutes are neither parallel 

nor concurrent. The links shown in Fig. 9 are perpendicular to the 

axes of revolutes at both ends, and thus they represent the shortest 

distances between the axes. In spite of being regarded by mechanical 

engineers as “probably one of the most useless of the known spatial 

linkages”1, this linkage is actually quite suitable for construction of 

motion structures. In kinematics, a number of other overconstrained 

linkages, such as the Goldberg 5R and 6R linkages, the Bennett-joint 6R 

linkage, and the Wohlhart double-Goldberg linkages, have been found 

by combining or merging several Bennett linkages (termed as addition 

and subtraction by Goldberg)15. This approach has laid the foundation 

for construction of motion structures based on the Bennett linkage.

In 2005, Chen and You16 reported the discovery of a family of 

motion structures based on the Bennett linkage. An arch is shown in 

Fig. 10  that contains many Bennett linkages (similar to Fig. 9) nested 

within each other. The assembly has a single degree of freedom. The 

concept can be extended to form structures that deploy into a tower 

or a helical profile. Moreover, the Bennett linkage can be built such that 

it folds into a compact bundle. This is realized by replacing the links 

with rigid pieces that do not span the shortest distances between the 

axes of the respective revolutes that they connect. These rigid pieces 

are designed so that they collapse together completely in the folded 

configuration17. An arch frame to this effect is shown in Fig. 11 . It is 

Fig. 7 A deployable ring structure for supporting a reflective mesh reflector at 

the centre. 

Fig. 6 Expansion of a mobile planar structure that can be used as a retractable roof. The expanded configuration is shown at a smaller scale than the folded 

configuration.

Fig. 8 A spherical 4R linkage. Fig. 9 A 4R Bennett linkage.

Motion structures are constantly 
evolving to overcome engineering 
problems in all walks of life
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interesting to note that both arches (Figs. 10 and 11) are based on the 

same framework but the folded configurations are different. 

The key to the design of Bennett-linkage-based structures is that 

the same deployable units are repeated again and again in a structural 

assembly. In fact, this approach is not new. A type of deployable 

boom consisting of a series of foldable cubes was proposed by NASA 

engineers back in 198818. A complete study of all the possibilities of 

foldable cubes should be credited to Britt and Lalvani19. With these 

basic deployable units, Chen20 has suggested the use of mathematical 

tiling and patterns as a tool to build large motion structures. However, 

it is still not very practical because of the large number of possibilities 

involved and both the geometrical and algebraic analysis are daunting.

Origami structures
There is another family of motion structures that is closely linked with 

the three-dimensional linkages using revolute joints, namely origami 

structures. Origami is the art of folding paper along a small set of 

predetermined creases (revolutes) to make intricate two- or three-

dimensional designs. Common origami patterns contain many vertices 

where the creases meet. Hence, around each vertex, the paper panels 

form a spherical linkage in which all of the axes of the revolutes also 

meet at one point (Fig. 8). This is particularly true if the panels are not 

allowed to stretch or to bend, a restrictive form of origami called ‘rigid 

origami’. Fig. 12  shows an example.

Origami motion structures also exist in nature. The wings of beetles 

and the leaves of hornbeams and beeches are found to mimic certain 

origami patterns21,22. Origami patterns have also been used to create 

motion structures. The most well known example is the Miura-Ori, 

a map-folding pattern that allows simultaneous expansion in all 

directions through pulling of the diagonal corners of a folded paper23. 

This pattern has been used for deployable solar panels in space. A 

family of solid-surface deployable antennas, reported in 199624, were 

Fig. 11 A Bennett-linkage-based arch capable of compact folding.
Fig. 10 Deployment sequence of a motion structure based on the Bennett 

linkage. It has an arch profile consisting of three interlinked arches.

Origami patterns have been used to 
create motion structures
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inspired by a wrapping pattern of thin membrane developed in the 

1960s. In addition to folding of planar objects, origami patterns have 

also been used in three dimensions. Foldable cylinders with triangulated 

patterns for space booms25 and an origami stent graft (Fig. 13)26 for 

the treatment of abdominal aortic aneurysms are two examples. In 

both cases, the folding patterns are not real mechanisms because they 

could not be folded if the panels were completely rigid. However, 

the geometrical distortion within the panels has been localized and 

minimized. It has been found to be extremely challenging to identify 

rigid folding patterns with true mobility.

Further developments
In the last few years, it has been observed that the boundary between 

motion structures and deformable deployable structures is gradually 

blurring. Flexible structural components have been introduced to 

mobile assemblies to create bistable self-locking structures. Smart 

structures with embedded sensors and actuators have begun to appear 

that are capable of responding to the environment in which they 

function. More recently, thin-walled structures with origami patterns 

have been developed in order to achieve better energy absorption 

ability when they collapse under impact loading. It is predicted that 

such structures may be used as microstructural units for ultralight 

materials with superior thermal and mechanical properties.

Motion structures have long been in use and remain at the forefront 

of engineering endeavor. They are constantly evolving to overcome 

engineering problems that exist in all walks of life.  

Fig. 12 Origami pattern for a windmill. The solid and dashed lines represent hill 

and valley creases, respectively. It has four vertices, each of which is a spherical 

linkage. 
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