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Characterization and measurement
Introduction
Destructive methods
Non-destructive methods
-Elastic wave method
-Infrared thermal method
-Non-contact resistivity method
-Dynamic modulus method
-Ellipse ring for crack sensitivity  
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Introduction
Destructive test –  obtain the 

material properties by 
seriously destroying sample

Nondestructive test –  obtain the 
information without damaging 
samples
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Introduction-destructive methods
Compression test
Tension test
Bending test
Impact test
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Introduction-nondestructive
Quality control

Finished products
Injection of grout
Position of reinforcing steel
Welding of reinforcing steel
Hydration rate of fresh concrete
Selection of watermelon and eggs
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Introduction-nondestructive
b.  In-service inspection

Boiler and vesile safety monitoring
Bridge safety monitoring
Building finish monitoring
Airplane
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Destructive tests
 -

 
Control methods for strength test

Open Loop Control (OLC)
Close Loop Control (CLC)

Input variable
(Reference Input)

Prescribed function
Controller Controlled Process

Output variable

Measured Output

Input variable
(Reference Input)

Prescribed function
Controller Controlled Process

Output variable

Measured OutputFeedback Signal

Open Loop Control (OLC)

Closed Loop Control (CLC)
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Destructive tests
 -

 
Calibration of transducers (1)

a. Mechanical parameters: 
Displacement, Strain, Crack opening, Force

b. Electric parameters: 
Voltage, Capacity, Impedance, Current

c. Calibration:
Find relationship between electrical variables and 
mechanical variables
General procedures

Connect the transducer to be calibrated
Provide a known mechanical parameter output
Adjust the reading of transducer to a desired value
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c. Calibration
e.g. A displacement transducer of 2.5mm full range

Destructive tests
 -

 
Calibration of transducers (2)

Displacement:

Voltage:
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Destructive tests
 -

 
Calibration of transducers (3)

Transducer
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Destructive tests-
 

Compressive test (1)

A set-up for compression test
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Destructive tests-
 

Compressive test (2)

Typical load versus axial displacement and load versus 
circumferential Displacement curves for three classes for concrete
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Load cell

Machine wedge grip

Loading fixture

Aluminum

LVDT{1 LVDT{3

loading plate

LVDT{4

Aluminum
loading plate

LVDT{2

Loading fixture

Machine wedge grip

Machine actuator

Destructive tests –Tension test



14

0.00 0.02 0.04 0.06 0.08 0.10

  Displacement (mm)                        

0

1

2

3

4

5

     Steel fiber  
(0.5% in volume)

Polypropylene fiber 
 (0.5% in volume)

Plain concrete 

Destructive tests –Tension test



15

Nondestructive test  -Shear wave reflection method
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shear waves: do not propagate in liquids

Case 1: concrete is liquid 

no wave transmission at interface

Case 1: concrete is liquid 

no wave transmission at interface

fresh concrete

steel plate
shear wave transducer 
(2.25 MHz)

Principle of Shear Wave Reflection Method
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Principle of Wave Reflection

fresh Concrete

Case 2: concrete is hardening

transmission losses at interface

Case 2: concrete is hardening

transmission losses at interface

hardened concrete

steel plate
shear wave transducer 
(2.25 MHz)
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Signal Analysis

Reflection Factor r

F1 , F2 …. FFT of reflections at 2.25 MHz
L        …. Losses (material, coupling, geometry)

F2 (f)
F1 (f)

= L · r

Attenuation of Wave Reflections

Attenuation (dB) = - 20 · log (r)

Time Domain Frequency Domain

R1

R2

F2

F1

FFT

2.25 MHz
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Typical Reflection Loss Development

Phase 1: liquid concrete no reflection loss

Phase 2: concrete hardens attenuation increases

Phase 3: hardening continues attenuation approaches final value
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Point A –  Initial Setting
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Transducer Central Power Supply

Main Power 
Switch

Laptop 
Computer

Pulser/ 
Receiver

Temperature 
Logger
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Steel Plates

On-Site 
Measurements
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Result of Field Test
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弹性波法-  
透射超声波法

d

Concrete
Transmitter Receiver
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Pulse Velocity
Determination

Amplitude 
Threshold

to – Onset time of signal
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Pulse Velocity Measurements

from Reinhardt, Grosse, University of Stuttgart

Sensitivity to hydration rate influenced by retarder
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Experimental Setup

Transmitter

Receiver

Sample
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Embedded sensor

Function 
generator

Power
amplifier

Pre-

 
amplifier

Oscilloscope

Transmitter Receiver
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Dynamic modulus and Poison’s ratio

2
LCE ρ= 1

2 2

2

−=
T

L

C
Cυ

Where,
and   are longitudinal and transverse 

velocities, respectively.   is the density of the 
concrete specimen.
The calculated result fit well with the dynamic 
Young’

 
modular measured by standard method.

LC
TC

ρ
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Hydration monitoring using embedded sensor
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Hydration monitoring using embedded sensor

传感器埋置

监测中
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In situ and  real time monitoring

Life time healthy monitoring
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AE technique
AE technique is a passive NDT method. It 
relies on the detection of elastic waves 
generated by sudden release or change of 
energy or deformation in materials.
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AE technique
Active movement of defects
whole structure 
highly sensitive
on-line monitoring
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聲發射測試技術

AE Transducer

AE Transducer

A acoustic wave propagation
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Basic AE measurement system
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AE technique
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AE Technique

Occurrence of AE rate during the tension test
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AE technique
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AE source location 
For 3-D case

Sum of the square of the errors
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AE source location
Differential with respect to x, y, z and C 
are in forms of;
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AE source location
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AE source location

AE events during period between pre 0.0 to 0.8 peak load
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AE source location

AE events during period after post 0.8 peak load
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AE source location

AE events during period between pre 0.0 to post 0.8 peak load
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AE source location

Major crack position for concrete specimen C-M13
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Accelerated corrosion test

Concrete

3% NaCl
eletrolyte

Plexiglass
pool

Rebar

To AE system 

AE
sensorPreamplifier

Resistor
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Comparison of AE and Galvanic 
measurement results
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AE source location

Computation of corrosion position

L
x

Transducer TransducerRebar corrosion
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2
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⋅Δ=−−
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AE source location



53

AE source location
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Infrared thermograph
 --Introduction (1)

a) Light
An electromagnetic wave and travels at 

3x108 m/s 

EM waves can be  either visible or 
invisible according to their wavelength
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Infrared thermograph
 --Introduction (2)

b) Visible light frequency range
Wave length (nm) Color
400-450 violet
450-480 blue
480-510 blue-green
510-550 green
550-570 yellow-green
570-590 yellow
590-630 orange
630-700 red
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Infrared thermograph
 --Introduction (3)

c) Invisible EM Waves

Wavelength λ < 0.4 μ m == ultraviolet
0.7 μ m < λ < 1.5 μ m == near-infrared
1.5 μ m < λ < 20 μm == mid-infrared
20 μm < λ == far infrared
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Infrared thermograph
 --Introduction (4)

d) Infrared frequency range
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Infrared thermograph
 --Mechanism (1)

Emission of EM waves by objects
(The principle of blackbody radiation)
Any object at non-zero temperature emits 

EM waves
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Infrared thermograph
 --Mechanism (2)

Infrared radiation and temperature related
The wavelength of ITC is within the 
emission wavelength range of any object 
in the normal temperature range of -30oC 
to 100oC.
Defects underneath can be detected by 
measuring the slight temperature 
fluctuation over the surface of an object.
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Infrared thermograph  -Active and passive measurements 

Active 
measurement

Passive 
measurement
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Theoretical background for 
debonded  tile detection (1)

B - Heat capacitance
H - Heat flow rate
K - Thermal conductivity

Initial condition:
t=0,  T=T0

)( 0TTKH
dt
dTB −−=
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Theoretical background for 
debonded  tile detection (2)

For heating process (H>0)

For cooling process (H<0)
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Two Cases (1)
Two cases for voids between tile and 

substrate
Case 1 = = voids are filled with water
Case 2 = = Voids are empty (filled with air)
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Two Cases (2)

Heat Capacity
(J cm-3

 
C-1)

Conductivity
(W m-1

 
C-1)Material

Air

Concrete

Water

0.0008

1.9

4.2

0.024

1

0.6

Thermal Properties
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Two Cases (3)
Case 1: Gap filled with water

During Heating proces

H/K K/B
Concrete H ~1/1.9≈0.5
Water 1.6H ~1/7 ≈0.14
∴T is lower than concrete
During Cooling process
T is higher than concrete
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Two Cases (4)
Case 2: Gap filled with air

During Heating proces

H/K K/B
Concrete H ~0.5
Water 42H ~30
∴T is higher than concrete
During Cooling process
T is lower than concrete
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Two Cases (5)

A debonded tile sample with half air and half 
water
uniform heating of the inspected face
after cooling for half an hour.
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Examples (1)

Thermal image of HKUST library indicating 
defected area 

filled with water on the external tiled wall
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Examples (2)

Thermograph of the government staff 
quarter under 

sunshine - indicating heavy damage 
on external wall
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Reflection correction

 

 

where 

    ε = object emissivity (the object is considered opaque) 

    ρ = object reflectivity 

Nobj = radiance from the surface of the object 

Nenv = radiance of the surrounding environment  

envobjCAM NNN ρε +=
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Reflection  correction
High emissivity case (ε > 0.9. ε = (1-ρ))

Nobj ≈
 

NCAM

Low emissivity case (ε < 0.9)
Reflection should be considered

Ceramic tile case (ε = 0.6 - 0.8)
Reflection can not be neglected
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Reflection  correction

……

Image 1
 

Image 2
 

Image n

Time
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Reflection  correction
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Distance and angle  --Space resolution
Field view of an ITC depends on the lens 
of the system
A camera may consist of 320 x 240 
detectors in an array
The area covered by each detector is the 
smallest size of an object 
Instantaneous field of view (IFOV)
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Distance and angle  -  Space resolution
Example (20 degree by 15 degree lens)

Distance to object Field of view 
IFOV

1m 0.35 x 0.26 m 1.1 x 1.1mm

5m 1.76 x 1.32 m 5.5 x 5.5mm

10m 3.52 x 2.63 m 11 x 11mm

50m 17.6 x 13.2 m 55 x 55mm
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Distance and angle  -  Influence of angle
Influence on the area

A0/cosα

A0

α
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Distance and angle  -  Influence of angle
Influence on radiation

I0

I(α)=I0

 

cosα
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Distance and angle  -  Influence of angle
Total received radiation

A0

 

/cosα
 

I0

 

cosα = Α0

 

Ι0
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Distance and angle  -  Influence of angle
Thumb rule for reality 
- No [erfectly diffuse bodies exist
- For most bodies, the emissivity uually 
goes down from 50 degree from normal
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Cement conduction mechanism

cation
anion

anodecathode

Conduction in cement is essentially electrolytic via ion 
transport through the interconnected pore network.

Resistivity
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Traditional resistivity measurements

Planar plat 

Concentric circle 

Four-probe
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Non-contact resistivity measurement
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Non-contact resistivity measurement
Works as a transformer

No electrode

AC signal
1 KHz
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  ρ= Rtotal 
π2
h
[ ln(r3/r2) +

34

4

rr
r
−

 ln(r4/r3) -
12

1

rr
r
−

 ln(r2/r1)]  

Analytical solution of resistivity
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Procedures
Weighing and mixing

 
water and cement at 

w/c=0.3, 0.35, 0.4 for 4 minutes
Consequently, casting

 
into electrical 

resistivity mould
Recording

 
the data at sampling interval 1 

minute and stop at or after 24 hours
Measuring

 
the weight and height of the 

sample
Analyzing

 
in EXCEL and smooth/ 

differential in Origin to get dρ/dt
 

curve and 
get the maximum dρ/dt

 
point
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microstructure formation process

Presenter
Presentation Notes
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Penetration method for setting time

Initial setting:
Penetration resistance:

 
3.5 MPa

Final setting:
Penetration resistance:

 
28

 
MPa

(ASTM 403)
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t    = g (t   , t  )              (2)

t    = f (t   , t  )               (1)

The relationship for the resistivity response and setting time
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t    = g (t   , t  )              (2)

t    = f (t   , t  )               (1)

The relationship for the resistivity response and setting time
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Mixing, sieving to get mortar, casting

Remove bleeding water

Penetrate mortar to
25 ± 2mm for each time

Test one time once 30 minutes, 
and then 15 minutes 

Plot graph resistance ~ elapsed time 

Mixing, casting

Automatically and continuously 
record data

Plot graph resistivity ~ elapsed time

Hard work

Quite long time

Penetration resistance Electrical resistivity
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Relationship between resistivity and strength

y = 5.1538x - 17.098
R2 = 0.9731
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Relationship between water amount
 

and 
lowest resistivity value
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Dynamic modulus

Induce an 
impact

Accelerator receive the vibration   
response and transfer them to the 
Data Acquisition Unit

Frequency display 
on the Signal 
Analysis Unit
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Accelerometer

Cylindrical
 specimen

Steel sphere

Armor plate

Oscilloscope
Volts

Time

FFT

Waveform analyzer

 Frequency
Magnitude

Dynamic modulus
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Results
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Dynamic Modulus
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Crack sensitivity test
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Crack sensitivity test
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Crack sensitivity test
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Cracking time of mortars with NaOH and KOH (w/c=0.45)
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THE ENDTHE END
THANKS!


	Advanced Cement-Based Sustainable Material Technology
	Characterization and measurement
	Introduction
	Introduction-destructive methods
	Introduction-nondestructive
	Introduction-nondestructive
	Destructive tests�- Control methods for strength test
	Destructive tests�- Calibration of transducers (1)
	Destructive tests�- Calibration of transducers (2)
	Destructive tests�- Calibration of transducers (3)
	Destructive tests- Compressive test (1)
	Destructive tests- Compressive test (2)
	Slide Number 13
	Slide Number 14
	Nondestructive test�-Shear wave reflection method
	Slide Number 16
	Principle of Wave Reflection
	Signal Analysis
	Typical Reflection Loss Development
	Point A – Initial Setting
	RL vs. Strength
	Slide Number 22
	Slide Number 23
	Result of Field Test
	弹性波法-�透射超声波法
	Pulse Velocity
	Pulse Velocity Measurements
	Experimental Setup
	Embedded sensor
	Slide Number 30
	Dynamic modulus and Poison’s ratio
	Hydration monitoring using embedded sensor
	Hydration monitoring using embedded sensor
	AE technique
	AE technique
	聲發射測試技術
	Basic AE measurement system
	AE technique
	AE Technique
	AE technique
	AE source location 
	AE source location
	AE source location
	AE source location
	AE source location
	AE source location
	AE source location
	Accelerated corrosion test
	Comparison of AE and Galvanic measurement results
	Slide Number 50
	AE source location
	AE source location
	AE source location
	Infrared thermograph�--Introduction (1)
	Infrared thermograph �--Introduction (2)
	Infrared thermograph �--Introduction (3)
	Infrared thermograph �--Introduction (4)
	Infrared thermograph �--Mechanism (1)
	Infrared thermograph �--Mechanism (2)
	Infrared thermograph �-Active and passive measurements 
	Theoretical background for debonded tile detection (1)
	Theoretical background for debonded tile detection (2)
	Two Cases (1)
	Two Cases (2)
	Two Cases (3)
	Two Cases (4)
	Two Cases (5)
	Examples (1)
	Examples (2)
	Reflection correction
	Reflection  correction
	Reflection  correction
	Reflection  correction
	Distance and angle�  --Space resolution
	Distance and angle�- Space resolution
	Distance and angle�- Influence of angle
	Distance and angle�- Influence of angle
	Distance and angle�- Influence of angle
	Distance and angle�- Influence of angle
	Cement conduction mechanism
	Traditional resistivity measurements
	Non-contact resistivity measurement
	Non-contact resistivity measurement
	Slide Number 84
	Procedures
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Relationship between resistivity and strength
	Relationship between water amount and lowest resistivity value
	    		 Dynamic modulus
	Slide Number 100
	Results
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Crack sensitivity test
	Crack sensitivity test
	Crack sensitivity test
	Slide Number 112
	Slide Number 113

